Estimation of confidence intervals for the mean of heavy tailed loss distributions: a comparative study using a simulation method

نویسنده

  • Ainura Tursunalieva
چکیده

This paper uses nonparametric methods to estimate the confidence intervals for the mean of asymmetric heavy tailed loss distributions. The nonparametric methods employed are the m out of n bootstrap, subsampling bootstrap, refined bootstrap, empirical likelihood ratio method, and bootstrap calibrated empirical likelihood methods. We evaluate the accuracy and compare the performance of the confidence interval estimates for the mean via a simulation study. In terms of the coverage probabilities, the results show that the m out of n bootstrap method performs well in samples of size 500 and 1000 and the empirical likelihood method performs well only in samples of size 1000.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subsampling the mean of heavy-tailed dependent observations

We establish the validity of subsampling confidence intervals for the mean of a dependent series with heavy-tailed marginal distributions. Using point process theory, we study both linear and nonlinear GARCH-like time series models. We propose a data-dependent method for the optimal block size selection and investigate its performance by means of a simulation study. JEL CLASSIFICATION NOS: C10,...

متن کامل

Simulation-based estimation of mean and standard deviation for meta-analysis via Approximate Bayesian Computation (ABC)

BACKGROUND When conducting a meta-analysis of a continuous outcome, estimated means and standard deviations from the selected studies are required in order to obtain an overall estimate of the mean effect and its confidence interval. If these quantities are not directly reported in the publications, they must be estimated from other reported summary statistics, such as the median, the minimum, ...

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

The Negative Binomial Distribution Efficiency in Finite Mixture of Semi-parametric Generalized Linear Models

Introduction Selection the appropriate statistical model for the response variable is one of the most important problem in the finite mixture of generalized linear models. One of the distributions which it has a problem in a finite mixture of semi-parametric generalized statistical models, is the Poisson distribution. In this paper, to overcome over dispersion and computational burden, finite ...

متن کامل

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009